Homology of Planar Polygon Spaces

نویسندگان

  • M. FARBER
  • A. A. Klyachko
چکیده

In this paper we study topology of the variety of closed planar n-gons with given side lengths l1, . . . , ln. The moduli space M` where ` = (l1, . . . , ln), encodes the shapes of all such n-gons. We describe the Betti numbers of the moduli spaces M` as functions of the length vector ` = (l1, . . . , ln). We also find sharp upper bounds on the sum of Betti numbers of M` depending only on the number of links n. Our method is based on an observation of a remarkable interaction between Morse functions and involutions under the condition that the fixed points of the involution coincide with the critical points of the Morse function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An application of geometrical isometries in non-planar molecules

In this paper we introduce a novel methodology to transmit the origin to the center of a polygon in a molecule structure such that the special axis be perpendicular to the plane containing the polygon. The mathematical calculation are described completely and the algorithm will be showed as a computer program.

متن کامل

ar X iv : 0 70 9 . 20 97 v 2 [ m at h . SG ] 2 N ov 2 00 7 INTERSECTION NUMBERS OF POLYGON SPACES

We study the intersection ring of the space M(α1, . . . , αm) of polygons in R3. We find homology cycles dual to generators of this ring and prove a recursion relation in m (the number of steps) for their intersection numbers. This result is analog of the recursion relation appearing in the work of Witten and Kontsevich on moduli spaces of punctured curves and on the work of Weitsman on moduli ...

متن کامل

Homology of Planar Polygon

In this paper we study topology of the variety of closed pla-nar n-gons with given side lengths l1,. .. , ln. The moduli space M ℓ where ℓ = (l1,. .. , ln), encodes the shapes of all such n-gons. We describe the Betti numbers of the moduli spaces M ℓ as functions of the length vector ℓ = (l1,. .. , ln). We also find sharp upper bounds on the sum of Betti numbers of M ℓ depending only on the num...

متن کامل

ar X iv : 0 70 9 . 20 97 v 1 [ m at h . SG ] 1 3 Se p 20 07 INTERSECTION NUMBERS OF POLYGON SPACES

We study the intersection ring of the space M(α1, . . . , αm) of polygons in R3. We find homology cycles dual to generators of this ring and prove a recursion relation in m (the number of steps) for their intersection numbers. This result is analog of the recursion relation appearing in the work of Witten and Kontsevich on moduli spaces of punctured curves and on the work of Weitsman on moduli ...

متن کامل

Some aspects of cosheaves on diffeological spaces

We define a notion of cosheaves on diffeological spaces by cosheaves on the site of plots. This provides a framework to describe diffeological objects such as internal tangent bundles, the Poincar'{e} groupoids, and furthermore, homology theories such as cubic homology in diffeology by the language of cosheaves. We show that every cosheaf on a diffeological space induces a cosheaf in terms of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006